Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2.

نویسندگان

  • Cara J Westmark
  • Romi Ghose
  • Paul W Huber
چکیده

Transcription factor IIIA (TFIIIA), isolated from the cytoplasmic 7 S ribonucleoprotein complex of Xenopus oocytes, is phosphorylated when incubated with [gamma-(32)P]ATP. This modification is due to a trace kinase activity that remains associated with the factor through several steps of purification. The kinase can use either ATP or GTP, and will phosphorylate casein and phosvitin to the exclusion of TFIIIA. The kinase is reactive with a ten-amino-acid peptide that is a specific substrate for protein kinase CK2 (CK2; formerly casein kinase II). In addition, inhibition of phosphorylation by heparin and stimulation by spermidine indicate that the activity can be ascribed to CK2. Phospho amino acid analysis established that serine is the sole phosphoryl acceptor in TFIIIA. There are four consensus sites for CK2 in TFIIIA; all contain serine residues at the putative site of phosphorylation. TFIIIA immunoprecipitated from oocytes, which were incubated with [(32)P]orthophosphate, is also phosphorylated exclusively on serine residues. Only the cyanogen bromide fragment, which was derived from the N-terminal end of TFIIIA, is labelled in vivo. A recognition sequence for CK2, located at Ser(16) in the beta-turn of the first zinc-finger domain, is the only protein kinase consensus sequence present in this peptide. Assays in vitro with site-specific mutants of TFIIIA established that Ser(16) is the preferred site of phosphorylation, with some secondary modification at Ser(314).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear exclusion of transcription factor IIIA and the 42s particle transfer RNA-binding protein in Xenopus oocytes: a possible mechanism for gene control?

The intracellular location of 7S and 42S RNP particles in Xenopus oocytes has been determined by immunohistochemistry. Using antibodies directed against the 48-mol-wt protein component of the 42S particle and against transcription factor IIIA, the protein moiety of the 7S particle, we show that these ribonucleoprotein particles are detectable only in the oocyte cytoplasm, being excluded from th...

متن کامل

The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III.

Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.

Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1...

متن کامل

CK2-mediated stimulation of Pol I transcription by stabilization of UBF–SL1 interaction

High levels of rRNA synthesis by RNA polymerase I are important for cell growth and proliferation. In vitro studies have indicated that the formation of a stable complex between the HMG box factor [Upstream binding factor (UBF)] and SL1 at the rRNA gene promoter is necessary to direct multiple rounds of Pol I transcription initiation. The recruitment of SL1 to the promoter occurs through protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 362 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002